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ABSTRACT: A method for determination of tacticity in polypropylene (PP) using FTIR

associated with multivariate analysis is presented. Blends of PP with known tacticity
were prepared with isotactic, syndiotactic, and atactic polymer and analyzed by *3C-
NMR. The FTIR spectra were recorded and processed through principal components
regression (PCR) and partial least-squares regression (PLS), using information from
several different portions of the spectra. The method was compared with the classical
methods of tacticity determination by FTIR based on the intensities of the bands at 998
cm ! (isotactic), 868 cm ™! (syndiotactic), and 975 cm ™! (internal standard), which are
known to be dependent on the crystallinity of the polymer and, thus, affected by
temperature and sample preparation. The models obtained with multivariate calibra-
tion, both with PCR and PLS, gave prediction errors up to fivefold smaller than that of
the classical methods, and were also shown not to be heavily dependent on the bands
that are affected by the crystallinity of the polymer, but rather on the methyl and
methylene bendings at 1375 and 1462 cm ™~ *. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci

85: 734745, 2002
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INTRODUCTION

Polypropylene (PP) is one of the most widely used
materials in formulations, especially in the auto-
motive industry, because of its chemical resis-
tance, high melting point, good dimensional sta-
bility, and high tenacity at room temperature.
These properties are related to the crystallinity of
the polymer, which depends on its tacticity. PP
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has three possible stereochemical configurations:
isotactic (i-PP, with all methyls on the same side
of the chain), syndiotactic (s-PP, with methyls on
alternating sides of the chain), and atactic (a-PP,
without any regular order).

Determination of tacticity in PP is usually car-
ried out by three methods: extraction of the atactic
polymer, '3C-NMR,' and FTIR spectroscopy, *
the most commonly used of which is extraction
with hydrocarbons. This method is based on the
fact that highly crystalline i-PP is insoluble in
boiling n-heptane, whereas the atactic polymer is
soluble. In spite of the low cost, extraction with
hydrocarbons is time consuming and subject to
errors. Small chains of isotactic polymer are also
soluble and would be quantified as atactic frac-



tions. Furthermore, fractions of a-PP inserted in
an isotactic chain, which is not soluble, would be
measured as isotactic polymer. In *C-NMR, the
chemical shift of the methyl signal is related to
the configuration of the neighboring methyl
groups. Zambelli and Ammendola® showed that,
with 300-MHz equipment, it is possible to observe
10 distinct peaks in the 20—22 ppm region of the
proton-decoupled spectrum, which can be related
to the methyl resonance being affected by the two
nearest neighbors on each side (thus making it
possible to observe pentad arrangements). This
method is the most exact, although it is expensive
and difficult to carry out, given that the analyses
are made at high temperature (125-135°C) and
typically take hours to be completed. The other
method is FTIR, which uses the ratio of the in-
tensities of some bands,®” usually at 998 cm ™!
(related to the a-helix conformation of the isotac-
tic chain)? and 868 cm ! (related to the double
helices® of the syndiotactic chain), to the band at
975 cm ™, to build a calibration curve. Although
easy and quick, the method is not always exact
because of the weak intensity of the bands used,
which can have great variation in the presence of
contaminants. This work describes a method to
determine the tacticity of PP by FTIR with mul-
tivariate analysis, using information from several
portions of the spectra to obtain more reliable
results.

MULTIVARIATE ANALYSIS

Multivariate analysis is a set of mathematical
tools designed to treat large amounts of data,
usually including tens or hundreds of measure-
ments for each sample, to take advantage of the
large quantities of information extracted through
instrumental analysis. Among these techniques,
factor analysis, which includes principal compo-
nents analysis or regression (PCA and PCR, re-
spectively) and partial least-squares regression
(PLS), has been extensively applied in several
studies to obtain regression models from IR, UV-
Vis, NMR, and other spectra.’~'? Explanation of
multivariate analysis and the involved math and
statistics can be found in the works of Kowalski et
31.13_15

In multivariate analysis, to predict the values
of dependent variables Y, which are linearly re-
lated to sets of measurements x; (j = 1, 2, 3,.. .,
m), it is necessary to build a calibration model
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similar to the one used in univariate calibration,
called multivariate linear regression (MLR):

Y=XB+E (1)

where Y is the matrix of dependent values (e.g.,
isotacticity), X is a matrix with the sets of mea-
surements (e.g., intensity of absorption at each
wavelength) in its rows, B is a matrix with the
regression coefficients in its columns, and E is the
error matrix. The matrix of regression coefficients
B is found by minimizing the error matrix with a
least-squares criterion, and can be calculated by
simple matrix algebra'®:

B = X'X) X'Y (2)

However, MLR has some practical problems:
because of mathematic properties, the inversion
of the X”X matrix does not yield good results if X
has more columns than lines. Thus, using a spec-
tra with 1000 different wavelengths it would be
necessary to prepare at least 1000 samples to
build the model.'®> Furthermore, if the columns
are highly correlated, as is the case in most spec-
troscopic data, matrix inversion will also not be
possible.'® Therefore, a method must be used to
reduce the amount of data to a few measurements
with low correlation. The usual choice to avoid
having to choose and discard data is factor anal-
ysis (PCR or PLS).'”

Factor analysis is basically a decomposition of
X into a new set of coordinates described by linear
combinations of the original independent vari-
ables, obtaining a “projection” of the data in a set
of a few orthogonal axes—the principal compo-
nents (PC)—containing all the significant infor-
mation from the original data. This information
can be used to build the calibration model.'3*
PCR uses principal components analysis to de-
compose X into two other matrices:

X=TL" + E (3)

called the scores (T) and loadings (L) of X. The
columns of L are the principal components (PC) of
the model and the columns of T are the coordi-
nates of the original data in this new set of axes.
These matrices are built so that their columns are
orthogonal vectors and the first columns always
contain more information than the last ones,
which usually contain only measurement noise,
and may be discarded.
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PLS modeling is similar to PCR, but decom-
poses both X and Y data, using the columns in Y
to estimate the factors in X and vice versa:

X=TL" + E 4)
Y=UQ"+F (5)

The new matrices are not as good as the PCR
scores and loadings to describe the original data
because they are influenced by the correlation
between the X and Y matrices. However, because
of this influence, the first principal components
contain more correlated information and so they
are better for the construction of calibration mod-
els. Thus, PLS often requires fewer principal com-
ponents than PCR for multivariate -calibra-
tion.'+18

Validation

A multivariate model must also be tested to verify
its precision, by using an independent set of sam-
ples with known properties (e.g., tacticity), which
are submitted to prediction by the model, allow-
ing the determination of the prediction error.
However, a separate set of samples is not always
available. Thus it is common to use a method of
validation with the same samples used in calibra-
tion, known as cross-validation.'® This works by
removing some samples from the calibration set,
building a regression model with the remaining
ones, then using the excluded samples for valida-
tion. The process is repeated several times, each

time taking out different samples, until all of
them were used for validation. The standard error
of cross-validation (root mean square of the pre-
diction errors obtained by this method) is a good
estimate of the standard error of prediction.

EXPERIMENTAL

Materials

Isotactic polypropylene (i-PP) was obtained from
commercially available samples supplied by PPH
(Triunfo, RS, Brazil). Atactic polypropylene (a-
PP) was obtained through extraction with boiling
n-heptane from a batch of polymer prepared in
our laboratory by polymerization with a TiCl,/
AlEt; catalyst.?° Syndiotactic polypropylene (s-
PP), which was produced by polymerization with
a chiral metallocene catalyst, was donated by Dr.
Marcio Nele de Souza (Universidade Federal do
Rio de Janeiro, COPPE, Programa de Engenharia
Quimica, Rio de Janeiro, Brazil). Polyethylene
(PE) used in the blends was produced in our lab-
oratory with a zirconocene/methylaluminoxane
catalyst.?!

13C-.NMR

The polymers used to make the blends were ana-
lyzed by 3C-NMR to determine their exact tac-
ticities. Polymer (500 mg) and chromium acetyla-
cetonate (30 mg) were dissolved in 3.0 mL of 1,2,4-
trichlorobenzene (TCB) maintained at 135°C for
24 h, under an argon atmosphere, in a 10-mm

Table I Compositions of the Blends Used in Calibration (1-27) and External Validation (A1-D3)

Isotacticity Syndiotacticity

Sample i-PP Fraction s-PP Fraction Total PP Fraction (i-PP/total PP) (s-PP/total PP)
1-3 0.293 0.041 0.521 0.562 0.079
4-6 0.045 0.275 0.518 0.087 0.530
7-9 0.181 0.153 0.507 0.357 0.302
10-12 0.392 0.021 0.508 0.772 0.041
13-15 0.019 0.420 0.546 0.035 0.770
16-18 0.203 0.198 0.494 0.411 0.401
19-21 0.246 0.235 0.499 0.493 0.472
22-24 0.000 0.482 0.518 0.000 0.930
25-27 0.494 0.000 0.494 1.000 0.000
Al1-A3 0.108 0.240 0.496 0.217 0.483
B1-B3 0.265 0.105 0.501 0.529 0.209
C1-C3 0.120 0.312 0.504 0.238 0.618
D1-D3 0.317 0.104 0.472 0.670 0.221
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Figure 1 Schematics of multivariate calibration with factor-based analysis for the

FTIR data.

NMR tube. The samples were then analyzed on a
500-MHz Bruker equipment (Bruker Instru-
ments, Billerica, MA) at 125°C with 10-s relax-
ation time and 400 signal accumulations.

FTIR

A 20-mg sample of a mixture of the polymers in
the appropriate proportions and 20 mg of polyeth-
ylene were dissolved under argon atmosphere, in
a system previously purged for 30 min, in 3 mL of
tetrachloroethylene at 110°C, with the minimum
heating time possible. Ten drops of this solution
were dripped onto a KBr tablet and the solvent
was vacuum-dried overnight, giving a thin film of
the PP-PE blend. Table I gives the composition of
each sample prepared. The infrared spectra of the
samples were obtained with a Bomem MB-100

Series equipment, in the range of 4000 to 400
cm !, with 4 cm ™! resolution and 16 signal accu-
mulations, automatic signal gain, and cosine apo-
dization.

Data Treatment

Only the 1550—640 cm ! region of the spectra
was used for calibration, given that, in many sam-
ples, the bands between 3030 and 2760 cm ™ were
saturated. Before calibration, data were submit-
ted to pretreatment, as shown in Figure 1:
Savitsky—Golay second derivatives®? of the spec-
tra were taken, with a window width of 7 points,
to correct the baseline drift; normalization was
done to compensate differences in intensities of
the spectra.?®> Data were also mean centered.??
PCR and PLS models were built using the soft-



738 OZZETTI ET AL.

1.0+

4| ® Cross-validation
O External Validation

Predicted Value

0.0 0.2

0.4

T T T T T
0.6 0.8 1.0

Real Value - Isotacticity

Figure 2 Predicted versus real values for isotacticity, calculated by PCR with 4 PC.

ware Pirouette 2.02 (Infometrix Inc.), choosing
the best number of principal components by
leave-one-out cross-validation.?® All calibrations
were done with respect to isotactic and syndiotac-
tic PP content in the blends because these are the
values proportional to the intensities of the bands
in the spectra, and then divided by the PP frac-
tion in each blend to yield PP tacticity values. The
optimal number of principal components was cho-
sen by leave-one-out cross-validation. Prediction
errors were estimated using a set of independent
samples of known tacticity.

RESULTS AND DISCUSSION

Nine blends of different compositions were used
to build the regression model. Samples were pre-
pared in triplicate, giving a total of 27 calibration
points. Because of its high crystallinity, PP alone
would not give films with enough transparency
when deposited from the tetrachloroethylene so-
lution. To increase the transparency, the PP sam-
ples were blended with polyethylene, which was
chosen because it has only a few bands that over-
lap with PP in the 1500—600 cm ! region.
Several models were tested, calculating the
standard error of cross-validation, both with PCR

and PLS. The optimal number of principal com-
ponents (PC) was chosen by cross-validation of
the different models. The best models obtained
used 4 PC for PCR and 3 PC for PLS, both for
isotacticity and syndiotacticity. However, stan-
dard errors of cross-validation can provide a
somewhat optimistic value of real prediction er-
rors. To have more realistic estimates, standard
errors of prediction for an independent set of sam-
ples were measured (external validation). Cross-
validation and external validation were also ap-
plied to the classical FTIR calibration methods,??
to compare the prediction errors and correlation
coefficients.

Figures 2 and 3 show the plots of predicted
value versus real value of the PCR and PLS mod-
els for isotacticity, for both cross-validation and
external validation. It can be seen that, although
both models give good precision and accuracy,
PLS uses one less principal component. As an
example, for samples B1-B3 (isotacticity 0.529),
PCR predicted 0.516, 0.532, and 0.516; and PLS
predicted 0.517, 0.529, and 0.513, respectively.

Figure 4 shows the same results for the uni-
variate regression. Comparing this figure with
the earlier ones, it is possible to see that the
prediction errors for the multivariate methods are
significantly lower than those for the univariate
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Figure 3 Predicted versus real values for isotacticity, calculated by PLS with 3 PC.

method. Also, the univariate method shows poor
reproducibility in the replicates and false values
are obtained for some samples: For the same sam-
ples B1-B3, the classical method gave predictions
of 0.570, 0.754, and 0.582. The poor reproducibil-

ity of the univariate model can be attributed to
the low intensity of the bands used for calibration,
which can be easily obscured by interference.
These bands are also heavily dependent on the
crystallinity of the polymer’ and can be affected
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Figure 4 Predicted versus real values for isotacticity, calculated by linear regression
with the ratio of the bands at 998 and 972 cm ™ *.
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Table II Standard Prediction Errors and
Correlation Coefficients for Determination of
Isotacticity with Univariate and Multivariate
Calibration

PCR PLS Univariate
(4 PC) (3 PC) Calibration
Standard error
Cross-validation 0.025 0.025 0.139
External validation  0.029  0.030 0.078
Correlation
coefficient (r) 0.998 0.998 0.928

by sample preparation. The multivariate model,
as will be seen later, does not primarily rely on
these bands, and thus is less affected by these
factors. Table II summarizes the prediction errors
for both methods. The classical method shows
a cross-validation error of 0.139, more than five-
fold higher than the 0.025 obtained with PCR
and PLS. With external validation this difference
decreases to twofold higher, though it is still
larger.

Industrial production of s-PP is relatively
new, so its characterization is much less stud-
ied. Therefore, we repeated the same procedure
to also evaluate syndiotacticity, comparing mul-

tivariate and classical methods. The results are
shown in Figures 5, 6, and 7. PCR and PLS gave
smaller prediction errors than did classical
methods, as can be seen in the case of samples
A1-A3 (0.483 syndiotacticity): the values pre-
dicted in the three replicates were 0.472, 0.473,
and 0.450 for PCR and 0.471, 0.476, and 0.454
for PLS, whereas the classical model was again
less accurate and reproducible, giving syndio-
tacticities of 0.635, 0.582, and 0.423. Table III
summarizes the standard errors for both meth-
ods. The results are similar to the isotactic-
ity determination as the cross-validation error
was fivefold higher in the classical method
than that in PCR and PLS and the external
validation error was fourfold higher. Once
again, the predictions obtained by PCR and
PLS match closely, even with PLS using one
less PC. As shown below, both models use basi-
cally the same information from the spectra.
The univariate method of syndiotacticity deter-
mination by FTIR also uses bands that are ba-
sically dependent on the crystallinity of the
sample, which leads to calibration curves that
are much less reliable than those of multivari-
ate regressions.

The PCR and PLS models are much more
robust than the univariate regressions. How-
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T

0.4

T T T T T
0.6 0.8 1.0
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Figure 5 Predicted versus real values for syndiotacticity, calculated by PCR with 4 PC.
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Figure 6 Predicted versus real values for syndiotacticity, calculated by PLS with 3 PC.

ever, it was observed during the first sample
preparations that they can also be significantly
affected by the presence of anomalous bands in
the spectra. Some of the first samples of our
study, prepared using longer heating times, had

intense bands in the 1240-1280, 1150-990, and
840-760 cm ! regions, as shown in Figure 8,
which led not only to loss of reproducibility in
the models but also, sometimes, to false results.
These bands are thought to be from oligomers
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Figure 7 Predicted versus real values for syndiotacticity, calculated by linear regres-
sion with the ratio of the bands at 868 and 972 cm™*.
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Table III Standard Prediction Errors and
Correlation Coefficients for Determination of
Syndiotacticity with Univariate and
Multivariate Calibration

PCR PLS Univariate
(4 PC) (3 PC) Calibration
Standard error
Cross-validation 0.023 0.023 0.145
External validation  0.033 0.032 0.126
Correlation
coefficient (r) 0.999 0.999 0.910

formed by thermal cleavage of the PP skele-
ton®*; thus those samples had to be discarded
and sample preparation had to be redesigned to
reduce heating time to a minimum and to be
carried out in an inert atmosphere. When the
intensities of these bands are lessened, they
have very little interference on the multivariate
models (but continue to affect the classical
ones). In fact, an attempt to improve the model
by removing from the calibration data the re-
gions affected by the anomalous bands did not
give any better results, with standard errors of
validation of 0.027 for isotacticity and 0.023 for
syndiotactic fraction, using PLS and 3 PC,
equal to that obtained previously. It was neces-

sary to discover whether the anomalous bands
were interfering in the bands that were most
important for the models, thus making them
less reliable.

The regression vectors, presented in Figure 9
for PCR and in Figure 10 for PLS, show that the
most important absorption for both multivari-
ate models corresponds to the bending of the
methyl side chains (around 1375 cm™!). This
band is very strong in the spectra of these poly-
mers, being less prone to interference from con-
taminants in the sample and independent of the
polymer crystallinity. Another important region
corresponds to the bending of the methylene
groups, which is around 1462 cm !, that is also
a strong band and independent of crystallinity.
It is interesting to note that this region is par-
tially overlapped with PE bands, though the
model can still extract information from it.
Thus, anomalous bands from thermal decom-
position do not obscure any region of high im-
portance to the models. It is thought that the
errors caused by these bands come from inter-
ference in the normalization of the spectra,
attributable to their large area. Comparing
both figures also shows that PCR and PLS give
very similar regression vectors, which explains
the similar results in the validations. Surpris-
ingly, the multivariate models show a slight

normal spectrum
P spectrum w/ anomalous bands

A/A,,,

1

T 1
1500

T
1400 1300 1200

1 ' 1 ! ¥ M 4

T
1100 1000 900 800 700

Wavenumber (cm’)

Figure 8 Spectra of two samples of PP-PE blends, one of which presents anomalous
bands attributed to the presence of oligomers.
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Figure 9 Regression vectors for the isotactic and syndiotactic PCR models.

contribution from the bands at 719 and 730
cm !, which are characteristic of methylene
rocking in polyethylene, perhaps the result of
data normalization, that could transfer vari-
ance from the intense bands to other regions of
the spectra.

CONCLUSIONS

Polypropylene tacticity can be determined by
FTIR with the application of the multivariate
techniques, principal components regression
(PCR) and partial least-squares regression (PLS).
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Figure 10 Regression vectors for the isotactic and syndiotactic PLS models.

These techniques give lower prediction errors
than those given by classical univariate calibra-
tion and show a greater reliability, with less prob-
ability of prediction errors resulting from inter-
ferences in the spectra. The results obtained with
PLS and PCR are very close, although PLS uses
one less principal component. The regression vec-
tors show that both models rely on the methyl and
methylene bending bands, which are strong and
unaffected by temperature or sample prepara-

tion; however, excessive thermal degradation of
the polymer during sample preparation can gen-
erate bands that significantly hamper the results.
This can be avoided by preparing the samples
using a short heating time in an inert atmo-
sphere.
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